asymptotic normality of the truncation probability estimator for truncated dependent data

Authors

s. jomhoori

v. fakoor

h. a. azarnoosh

abstract

in some long term studies, a series of dependent and possibly truncated life-times may be observed. suppose that the lifetimes have a common marginal distribution function. in left-truncation model, one observes data (xi,ti) only, when ti ≤ xi. under some regularity conditions, we provide a strong representation of the ßn estimator of ß = p(ti ≤ xi), in the form of an average of random variables plus a remainder term. this representation en-ables us to obtain the asymptotic normality for ßn .

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Asymptotic normality of Hill Estimator for truncated data

The problem of estimating the tail index from truncated data is addressed in ?. In that paper, a sample based (and hence random) choice of k is suggested, and it is shown that the choice leads to a consistent estimator of the inverse of the tail index. In this paper, the second order behavior of the Hill estimator with that choice of k is studied, under some additional assumptions. In the untru...

full text

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

full text

Asymptotic Behaviors of Nearest Neighbor Kernel Density Estimator in Left-truncated Data

Kernel density estimators are the basic tools for density estimation in non-parametric statistics.  The k-nearest neighbor kernel estimators represent a special form of kernel density estimators, in  which  the  bandwidth  is varied depending on the location of the sample points. In this paper‎, we  initially introduce the k-nearest neighbor kernel density estimator in the random left-truncatio...

full text

Density Estimators for Truncated Dependent Data

In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...

full text

asymptotic behaviors of the lorenz curve for left truncated and dependent data

the purpose of this paper is to provide some asymptotic results for nonparametric estimator of the lorenz curve and lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. first, we show that nonparametric estimator of the lorenz curve is uniformly strongly consistent for the associated lorenz curve. also, a strong gaussian approximation for ...

full text

Asymptotic normality of Powell’s kernel estimator

In this paper, we establish asymptotic normality of Powell’s kernel estimator for the asymptotic covariance matrix of the quantile regression estimator for both i.i.d. and weakly dependent data. As an application, we derive the optimal bandwidth that minimizes the approximate mean squared error of the kernel estimator.

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of numerical analysis and optimization

جلد ۲، شماره ۱، صفحات ۰-۰

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023